Faster Probabilistic Planning through More Efficient Stochastic Satisfiability Problem Encodings

نویسندگان

  • Stephen M. Majercik
  • Andrew P. Rusczek
چکیده

The propositional contingent planner ZANDER solves finitehorizon, partially observable, probabilistic planning problems at state-of-the-art-speeds by converting the planning problem to a stochastic satisfiability (SSAT) problem and solving that problem instead (Majercik 2000). ZANDER obtains these results using a relatively inefficient SSAT encoding of the problem (a linear action encoding with classical frame axioms). We describe and analyze three alternative SSAT encodings for probabilistic planning problems: a linear action encoding with simple explanatory frame axioms, a linear action encoding with complex explanatory frame axioms, and a parallel action encoding. Results on a suite of test problems indicate that linear action encodings with simple explanatory frame axioms and parallel action encodings show particular promise, improving ZANDER’s efficiency by as much as three orders of magnitude.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Planning in the Probabilistic-Planning-as-Stochastic-Satisfiability Paradigm

zander is a state-of-the-art probabilistic planner that extends the probabilistic-planning-as-stochastic-satisfiability paradigm to support contingent planning in domains where there is uncertainty in the effects of the agent’s actions and where the scope and accuracy of the agent’s observations may be insufficient to establish the agent’s current state with certainty (Majercik & Littman 1999)....

متن کامل

APROPOS2: Approximate Probabilistic Planning out of Stochastic Satisfiability

The probabilistic contingent planner ZANDER (Majercik 2000) operates by converting the planning problem to a stochastic satisfiability problem and solving that problem instead. Although ZANDER can solve some simple standard test problems more efficiently than three alternative approaches to probabilistic planing, ZANDER is currently confined to small problems. We introduce APROPOS, a probabilis...

متن کامل

Contingent Planning Under Uncertainty via Stochastic Satis ability

We describe two new probabilistic planning techniques|c-maxplan and zander|that generate contingent plans in probabilistic propositional domains. Both operate by transforming the planning problem into a stochastic satis ability problem and solving that problem instead. c-maxplan encodes the problem as an E-Majsat instance, while zander encodes the problem as an S-Sat instance. Although S-Sat pr...

متن کامل

Planning Under Uncertainty via Stochastic Statisfiability

A probabilistic propositional planning problem can be solved by converting it to a stochastic satisfiability problem and solving that problem instead. I have developed three planners that use this approach: MAXPLAN~ G-MAXPLAN~ and ZANDER. MAXPLAN~ which assumes complete unobservability, converts a dynamic belief network representation of the planning problem to an instance of a stochastic satis...

متن کامل

APPSSAT: Approximate Probabilistic Planning Using Stochastic Satisfiability

We describe APPSSAT, an anytime probabilistic contingent planner based on ZANDER, a probabilistic contingent planner that operates by converting the planning problem to a stochastic satisfiability (Ssat) problem and solving that problem instead [1]. The values of some of the variables in an Ssat instance are probabilistically determined; APPSSAT considers the most likely instantiations of these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002